Differential blockade of neuronal voltage-gated Na(+) and K(+) channels by antidepressant drugs.

نویسندگان

  • Graham M Nicholson
  • Tim Blanche
  • Kylie Mansfield
  • Yvonne Tran
چکیده

The effects of a range of antidepressants were investigated on neuronal voltage-gated Na(+) and K(+) channels. With the exception of phenelzine, all antidepressants inhibited batrachotoxin-stimulated 22Na(+) uptake, most likely via negative allosteric inhibition of batrachotoxin binding to neurotoxin receptor site-2 on the Na(+) channel. Imipramine also produced a differential action on macroscopic Na(+) and K(+) channel currents in acutely dissociated rat dorsal root ganglion neurons. Imipramine produced a use-dependent block of Na(+) channels. In addition, there was a hyperpolarizing shift in the voltage-dependence of steady-state Na(+) channel inactivation and slowed repriming kinetics consistent with imipramine having a higher affinity for the inactivated state of the Na(+) channel. At higher concentrations, imipramine also blocked delayed-rectifier and transient outward K(+) currents in the absence of alterations to the voltage-dependence of activation or the kinetics of inactivation. These actions on voltage-gated ion channels may underlie the therapeutic and toxic effects of these drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of neuronal Na+ channels by antidepressant drugs.

Although tricyclic antidepressant (TCA) blockade of cardiac Na+ channels is appreciated, actions on neuronal Na+ channels are less clear. Therefore, the effects of TCAs (amitriptyline, doxepin and desipramine) as well as trazdone and fluoxetine on voltage-gated Na+ current (INa) were examined in bovine adrenal chromaffin cells using the whole-cell patch-clamp method. Amitriptyline produced conc...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Short communication Inhibition of voltage-gated K channels and Ca channels by diphenidol

Background: Although diphenidol has long been deployed as an anti-emetic and anti-vertigo drug, its mechanism of action remains unclear. In particular, little is known as to how diphenidol affects neuronal ion channels. Recently, we showed that diphenidol blocked neuronal voltage-gated Na+ channels, causing spinal blockade of motor function, proprioception and nociception in rats. In this work,...

متن کامل

Antiepileptic Drug Targets: An Update on Ion Channels

Different mechanisms of action have been proposed to explain the effects of antiepi‐ leptic drugs (AEDs) including modulation of voltage‐dependent sodium calcium and potassium channels, enhancement of γ‐aminobutyric acid (GABA)‐mediated neuronal inhibition, and reduction in glutamate‐mediated excitatory transmission. Recent advances in understanding the physiology of ion channels and genetics b...

متن کامل

The mechanism of Na⁺/K⁺ selectivity in mammalian voltage-gated sodium channels based on molecular dynamics simulation.

Voltage-gated sodium (Nav) channels and their Na⁺/K⁺ selectivity are of great importance in the mammalian neuronal signaling. According to mutational analysis, the Na⁺/K⁺ selectivity in mammalian Nav channels is mainly determined by the Lys and Asp/Glu residues located at the constriction site within the selectivity filter. Despite successful molecular dynamics simulations conducted on the prok...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of pharmacology

دوره 452 1  شماره 

صفحات  -

تاریخ انتشار 2002